Mark schemes

Q1. (a) 0 0 <u>С</u> – С – О – С H₂ – C H₂ – C H₂ – О – ester link including C-O-C **M1** ignore brackets and 'n' allow $(CH_2)_3$ -O- at either end but **not** both 1 M2 rest of structure including trailing bonds not M2 if more than one repeating unit **allow** for one mark $-OOCCOOCH_2CH_2CH_2$ as long as trailing bonds included 1 polyesters: C=O/C-O OR polar bonds / chain AND (b) polyalkenes: (only) C-C OR non-polar bonds / chain not just 'polyesters are polar' not M1 if C=C mentioned 1 (polyesters) susceptible to nucleophilic attack / can be hydrolysed 1 0.162 amount of $Na_2C_2O_4 = \overline{134.0} = 0.00121$ mol (c) **M1** M1 x ² 5 1 stoichiometry $\binom{2}{5}$ (4.84 x 10⁻⁴) M2 1 М3 scaling (÷10) = 0.00121 x $\frac{2}{5} \div 10 = 4.84 \text{ x } 10^{-5} \text{ mol}$ M2 ÷ 10 (conc/40) M3 x 1000 23.85 1 4.84 x 10⁻⁵ 28.85 concentration of $MnO_{4^{-}} =$ = 0.00203 mol dm⁻³ M4 Min 2 sig figs 1

(d)

G	raduation mark	
\bigcup	Meniscus <u>curved</u> with the bottom of the curve on the horizontal line	
(burette) fill	below/at eye level janore make sure tap closed / funnel / gloves	
(solution) w	rear gloves allow wash/rinse hands after any spillage not fume cupboard ignore lab coat / stir carefully	
colourless to	o pink/pale purple <i>not just purple</i> <i>not 'clear' for 'colourless'</i>	
remove fun	nel	
ensure jet i	s filled / no (air) bubbles <i>allow</i> open tap to fill space below tap	
This quest	ion is marked using Levels of Response. Refer to the	

All stages are covered and each stage is generally

Answer is communicated coherently and shows a logical progression from Stage 1 to Stages 2 and 3

Covers at least 2 point for stage 1, 1 for stage 2 and 2

If given equation must show correct stoichiometry for

correct and virtually complete.

for stage 3.

Level 3

5-6 marks

	six marks
Level 2 3-4 marks	All stages are covered but stage(s) may be incomplete or may contain inaccuracies OR two stages are covered and are generally correct and virtually complete. Answer is communicated mainly coherently and shows a logical progression from Stage 1 to Stages 2 and 3.
Level 1 1-2 marks	Two stages are covered but stage(s) may be incomplete or may contain inaccuracies OR only one stage is covered but is generally correct and virtually complete. Answer includes isolated statements but these are not presented in a logical order.
Level 0	Insufficient correct chemistry to gain a mark.

Stage 1 - AH

1a ∆H negligible

1b make & break same number of bonds 1c make & break same type of bonds / bonds have similar enthalpies

Stage 2 - Δ S

2a increase in entropy

2b increase in particles in solution / from 4 to 7 particles (ecf from incorrect equation showing increase in no. of moles)

Stage 3 - ΔG

- $3a \Delta G = \Delta H T\Delta S$
- 3b ΔG negative (for forward reaction)
- 3c correct discussion of why ΔG is negative based on ΔH and T ΔS

[20]

6

Q2.

А

[1]

Q3.

D

[1]

Q4.			
A	poly(alkene)		[1]
Q5. A			[1]
Q6. A			
			[1]
Q7. (a)	4 peaks	1	
	Triplet	1	
	Two H on adjacent C M3 dependent on correct M2	1	
(b)	$H_2N - (CH_2)_6 NH_2$ $H_2N - (CH_2)_6 NH_2$ NH_2N NH_2 NH_2		
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	
(c)	or II	1	
(d)	H_3C $N-CH_2-CH_2-N$ CH_3 N N H_3C $Not-C_2H_{4-}$	1	
			[6]

Q8. C

[1]

Q9. B

Q10.

(a)	Z-2-methylpe	ent-2-en (-1-) oic acid	
	lg h	gnore missing hyphens or extra commas, spaces,	
		yphens	1
(b)	$C_6H_{10}O_2 + 7\frac{1}{2}$	$2^{\prime} O_2 \rightarrow 6CO_2 + 5H_2O_2$	
	A	Now multiple	
	,		M1
	Volume of CO	D ₂ formed = 180 cm ³	
	lf 2	f incorrect volume:155 gives 125mg / 335 gives 70mg could score M1,M3,M4 – max 3	
	lf m	f incorrect volume from AE then penalise M2 and nark on	
	(1	Final answer is 0.806 × their volume)	
			M2
		$105000 \times (180 \times 10^{-6})$	
	Mol carbon d	lioxide = pV/RT = 8.31 × 298	
		= 7.632 × 10 ⁻³	
	lf	f unit error in p, V or T lose M3 and M5	
	lf	f incorrect rearrangement lose M3 and M5	
	lf	f both errors seen then no further marks	
			M3
	Mol P , $C_6H_{10}O_2$ used = 7.632 × 10 ⁻³ / 6 = 1.272 × 10 ⁻³		
	N	13 divided by 6 If wrong no further marks	
			M4
	Mass P used	$= 1.272 \times 10^{-3} \times 114(.0) \text{ g}$	
		= 145 mg	
	N	/lark for answer (allow ans to 2 sf)	
	C	Check chemical equation before awarding final	
	п	nark	N45
			IVIS

(c)

	H ₃ C	
	соон ОК Нас	
	Mark independently	
	Apply the list principle	M1
	Fig 4: IR OH (acid) peak (2500-3000cm ⁻¹) present Ignore C=O signal at 1750 cm ⁻¹	M2
	Fig 5:13C NMR 4 peaks so 4 (non-equivalent) environmentsOrPeak at 160-185 (show C=O) in (esters or) acidsOrPeak at 40-50 (show R-CO- <u>C</u> H) presence of carbonyl	М3
	Both M2 & M3 can be awarded on the spectra Allow correct Fig 4 answers in Fig 5 and converse	
(d)	R has 4 C next to C=O S has 2 C next to C=O <i>M1 for structural point</i>	M1
	in range δ = 20-50 R has two peaks and S only one peak in this range Or R has more peaks (allowed if no numbers given) <i>M</i> 2 for resulting peak in spectra	M2
	OR	
	S has a $-C(H_2)-C(H_3)$ R does not	M1
	S has one peak in range δ = 5-40 R does not / lowest peak for S is lower than lowest for R	M2
	(Both have) three peaks	М3
(e)	R Both singlets	M1
	S has triplet and a quartet	M2
	OR	
	R CH ₃ /peak at 2.1-2.6 is a singlet	M1
	S CH₃/peak at 0.7-1.2 is a triplet	

M1

M2

1

1

1

M2

OR R CH₂/peak at 2.1-2.6 is a singlet S CH₂/peak at 2.1-2.6 is a quartet (Both have) two peaks

(f)

Must have trailing bonds Ignore brackets and *n*

OR

condensation Ignore esterification

(g)

Must have trailing bonds Ignore brackets and n

M1

Strong / non-polar C-C bonds (in the chain)

M2

	cannot be attacked by nucleophiles / acids / cannot be hydrolysed.	М3	
	OR		
	<u>Only</u> polar ester group	M2	
	Can be attacked by nucleophiles / acids / can be hydrolysed	М3	
	M3 dependent on correct or close M2 Allow 1 mark for in (polar) ester link in side chain/not in main chain therefore polymer chain not broken		
			[21]
Q11. C			
			[1]
Q12.			
C			[1]
Q13. (a)			
		1	
	Addition	1	
(b)	Н Н НО-С-ОН I I СН ₃ СН ₃		
		1	
	О СН₃ Н О		
	O is biodegradable	1	
(C)		1	

Polar C=O group or δ+ C in Q (but not in P)	1
Therefore, can be attacked by nucleophiles (leading to breakdown)	1 [7]